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Abstract

In recent decades, the study of biological variation of laboratory analytes has received
increased attention. The reasons for this interest are related to the potential practical
applications of such knowledge. Biological variation data allow the derivation of important
parameters for the interpretation and use of laboratory tests, such as the index of individuality
for the evaluation of the utility of population reference intervals for the test interpretation, the
estimate of significant change in a timed series of results of an individual, the number of
specimens required to obtain an accurate estimate of the homeostatic set point of the analyte
and analytical performance specifications that assays should fulfill for their application in the
clinical setting. It is, therefore, essential to experimentally derive biological variation
information in an accurate and reliable way. Currently, a dated guideline for the biological
variation data production and a more recent checklist to assist in the correct preparation of
publications related to biological variation studies are available. Here, we update and integrate,
with examples, the available guideline for biological variation data production to help
researchers to comply with the recommendations of the checklist for drafting manuscripts on
biological variation. Particularly, we focus on the distribution of the data, an essential aspect to
be considered for the derivation of biological variation data. Indeed, the difficulty in deriving
reliable estimates of biological variation for those analytes, the measured concentrations of
which are not normally distributed, is more and more evident.

Abbreviations: ANOVA: analysis of variance; CA-125: carbohydrate antigen 125; CgA:
chromogranin A; CI95%: confidence intervals at 95%; CRP: C-reactive protein; cTnT: cardiac
troponin T; CVA: analytical coefficient of variation; CVG: between-subject biological coefficient
variation; CVI: within-subject biological coefficient of variation; CVT: within-subject total
coefficient of variation; DCCT: Diabetes Control and Complications Trial; EFLM: European
Federation of Clinical Chemistry and Laboratory Medicine; FLC: immunoglobulin-free k and �
light chains; HbA1c: glycated hemoglobin; HE4: human epididymis protein 4; ICC: intraclass
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Biological variation and derived indices

Introduction to biological variation

The total variation (CVT) of a laboratory result is made up

of three components, namely, preanalytical variation, ana-

lytical variation (CVA) and within-subject biological vari-

ation (CVI)
1. The preanalytical variation concerns all phases

covering the preparation of the subject for sampling, and the

collection, transport, storage and handling of biological

samples. It can be assumed that, once all potential

preanalytical factors have been identified, they can be

minimized and the contribution of the preanalytical variation

component to CVT can be considered negligible. CVA is

associated with the analytical performance in terms of

measurement errors. This variability should be strictly

controlled, but, unlike the preanalytical variation, it cannot

be completely removed. Finally, CVI represents the physio-

logical changes of analyte concentration that occurs in a

specified biological fluid in each individual due to bio-

logical factors1. At each moment, the concentration of a

constituent in a biological fluid, e.g. blood or urine, in a

single individual is the result of dynamic control. This

control is due to mechanisms that tend to maintain the

analyte concentration around an average value that is

optimal for the organism, namely the ‘‘homeostatic set

point.’’ CVI reflects this random fluctuation of the analyte

concentration around the homeostatic set point. In contrast,

the between-subject biological variation (CVG) expresses the

difference among homeostatic set points for the same

analyte in different individuals under the same physiological

conditions1. By definition, the biological variation compo-

nents are not reducible and are typically associated with a

given analyte. As CVI tends to vary from individual to

individual, in general, the average of CVI values derived in a

group of individuals is considered. This should be obtained

experimentally through a rigorous experimental protocol that

includes the elimination of preanalytical variation, the

careful estimate of CVA, and the robust statistical derivation

of CVI and CVG, expressed as coefficient of variation.

Biological variation studies of different body constituents

have received increasing attention in recent decades because

of the potential practical application of such knowledge.

Biological variation data are now considered a required

element to judge the potential clinical significance of a

biomarker.

Applications of data on biological variation

Biological variation data for an analyte permits the derivation

of important information for the correct application and

clinical interpretation of its measurement2. In particular, the

evaluation of utility of population reference intervals (RIs) for

the interpretation of test results, the estimate of the signifi-

cance of changes of results in an individual and the

calculation of the number of specimens required for an

analyte to ensure that the mean result is within the desired

closeness to the individual’s homeostatic set point (n) can be

derived. Finally, it is possible to derive analytical performance

specifications for a given measurement to assess its suitability

for clinical use.

Analytical performance specifications

Defining analytical performance specifications for each

analyte measurement is essential to make its determination

clinically usable and to ensure that the measurement error

does not have an impact on the result3. In a conference held in

1999 in Stockholm under the auspices of the International

Federation of Clinical Chemistry and Laboratory Medicine

(IFCC) and International Union of Pure and Applied

Chemistry (IUPAC), a hierarchy of sources for deriving the

analytical goals of a laboratory measurement and defining

quality specifications in laboratory medicine was defined4. In

2014, a follow-up conference held in Milan revisited the

Stockholm consensus and investigated the extent to which the

originally advocated hierarchy was still valid or the need to

change or expand it5. Although the essence of the hierarchy

established in Stockholm was still supported, new perspec-

tives prompted its simplification and explanatory additions.

The recommended approaches for defining analytical per-

formance specifications should primarily rely on the effect of

analytical performance on clinical outcomes or on the

biological variation of the measurand6. Since analytical

specifications derived from experimental studies assessing

the clinical impact of methodological performances are

difficult to obtain in practice, biological variation constitutes

the most reliable source of useful information in the definition

of analytical targets for the majority of the analytes7. The

landmark paper by Fraser et al.8 proposed specific formulae to

calculate analytical performance specifications at three qual-

ity levels, i.e. minimum, desirable and optimal, for impreci-

sion, bias and total error (TE), from biological variation data.

Some authors have questioned this approach for deriving

allowable TE and have proposed an alternative model in

which the maximum allowable bias and imprecision are

interrelated9. Even with some limitations, the classical Fraser

model remains the most widely used approach for the

definition of analytical goals in laboratory medicine10. It

should also be mentioned that, in specific clinical monitoring

situations, alternative approaches to deriving specifications

could be adopted11.

Index of individuality (II)

From the biological variation components, it is possible to

derive the II, a parameter that allows the assessment of the

utility of conventional population-based RIs derived from

apparently healthy individuals for the interpretation of

laboratory tests12. The formula to derive II uses the three

following variance components: average within-run analytical

variance (S2
A), average within-subject biological variance

(S2
I) and between-subject biological variance (S2

G) (Table 1).

During his pioneering studies on biological individuality,

Eugene Harris proved that, if II is 50.6, the analyte shows

high individuality and the variation of values for the

individual occupies only a small part of the RI, making the

latter barely useful for result interpretation13. In these cases,

there is the risk of improperly considering physiological the

values of an analyte in an individual that are significantly far

from its homeostatic set point but still included within RI14,15.

On the contrary, if II is 41.4, the analyte shows low

individuality and the value dispersion in each individual
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covers most of the dispersion among individuals that is

represented by the RI, making it a useful tool for the test

interpretation.

Reference change value (RCV)

For analytes showing high individuality (i.e. II 50.6), for

which comparison of results with the RI is not recommended,

a better interpretation strategy is the monitoring of longitu-

dinal time changes of test results by the RCV application. The

RCV, which was introduced by Harris and Yasaka in 198316,

is defined as the change needed between two serial results

from the same individual to be statistically significantly

different, taking into account the measurement error. The

RCV is a fundamental parameter for the monitoring of

longitudinal changes of analyte concentrations in an individ-

ual and it is especially useful for those analytes that show a

high individuality and for which the RI has limited use in the

interpretation of results. This situation occurs for most

analytes assayed in laboratory medicine since CVI is

frequently much smaller than the respective CVG
17.

The estimation of RCV has sparked wide debate and

discussion regarding the statistical approach that should be

applied to derive it. In Fraser’s traditional approach, RCV is

derived from the CVI estimation and, consequently, requires a

normal distribution of biological data (Table 1)15. However,

not all biological constituents show a symmetric variation of

their concentrations in individuals, even after their logarith-

mic transformation. Therefore, when the biological behavior

of an analyte does not meet assumptions needed to apply

statistical parametric models, the derivation of RCV becomes

complex18. To overcome the issue of data distribution, we

recently proposed and preliminarily validated an alternative

statistical model to the parametric one to assess the signifi-

cance of the difference between serial measurements in an

individual19. In particular, we compared the traditional

parametric and the newly proposed non-parametric statistical

models by selecting three analytes, i.e. glycated hemoglobin

(HbA1c), chromogranin A (CgA) and C-reactive protein

(CRP), that show a normal, a bimodal and a skewed

distribution of their individual concentrations, respectively.

For each analyte, we used both models to derive the following

value (P2) that was significantly lower or higher than the

baseline value (P1). For HbA1c, P2 results obtained by the two

methods overlapped. For CgA, when P1 concentrations were

in the physiological range, P2 values obtained by the

parametric method and the new one were similar, while,

when P1 concentrations were equal to or higher than the

upper reference limit, the P2 estimate differed significantly.

Finally, for CRP at every tested concentration, P2 values

derived from the two statistical approaches differed markedly,

and those obtained by the traditional parametric method were

unreliable and clinically impractical19. These results showed

that when biological analyte concentrations present a bimodal

or skewed distribution, the new statistical approach appears to

be more reliable in assessing differences between serial

measurements. In addition, for some analytes such as cardiac

troponins, the application of RCV as an absolute (instead of

relative) difference between serial samples has been advo-

cated, and this approach could be suitable in these cases.

Number of specimens required to estimate the individual’s

homeostatic set point (n)

In principle, the greater the number of samples measured for

each individual in biologically stable conditions, the more

accurate the estimate of the homeostatic set point will be,

especially if the analytical method is imprecise and/or the

analyte shows a high CVI. To calculate n, it is possible to use

the rearrangement of the usual standard error of the mean

formula given in Table 12.

Experimental protocol for deriving biological varia-
tion data

Premise

In the previous section, we briefly summarized the import-

ance of the knowledge of biological variation data in

laboratory medicine. It is, therefore, essential that these data

are accurately derived through a standardized, well-defined

Table 1. Symbols and formulae related to biological variation data.

Abbreviations Definitions Formulas

S2
T Total variance of all measurements (S2

A +S2
I +S2

G)
S2

I+A Average within-subject total variance
S2

A Average within-run analytical variance
S2

I Average within-subject biological variance (S2
I+A�1/2S2

A)
S2

G Between-subject biological variance ([(2kr�1)/2k(r�1)] {S2
T �S2

A � [(2kr�2)/(2kr�1)] S2
I},

where k is the number of specimens per subject and r
is the number of subjects)

CVT Within-subject total coefficient of variation
CVA Analytical coefficient of variation
CVI Within-subject biological coefficient of variation
CVG Between-subject biological coefficient of variation
II Index of individuality (S2

I+A/S2
G)

RCV Reference change value (2.77 (CVA
2+CVI

2)0.5)
n Number of specimens required to ensure that the homeostatic

set point estimate is within a desired percentage of closeness (D)
[1.962 (CVA

2+CVI
2)/D2]

IH Index of heterogeneity (ratio of the observed CVT to
the theoretical CV)

(CVT/[(2/k – 1)1/2 �100], where k is the number of
specimens per subject)
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and robust experimental protocol. Currently, an international

guideline describing the way for deriving biological variation

data is lacking, and the only standard about this topic is the

landmark publication by Fraser and Harris in 19892. However,

this paper is more than 25 years old and, in some aspects, its

content needs to be updated according to recent developments

in the field.

As clearly shown in the Ricos database11, there are

numerous experimental studies in the literature that derive

biological variation data for many analytes (approximately

240 articles dealing with more than 350 analytes). The main

problem is high heterogeneity among experimental protocols

used by different authors that necessarily affects the bio-

logical variation estimates obtained20–23. The availability of

an updated standard would, therefore, allow investigators not

only to carry out new experimental studies for deriving

biological variation data in a correct and standardized way but

also to objectively review the published literature and identify

the high-quality studies. The Biological Variation Working

Group (WG-BV) established by the European Federation of

Clinical Chemistry and Laboratory Medicine (EFLM) has

recently published a checklist24, built in accordance with the

Standards for Reporting of Diagnostic Accuracy (STARD)

guideline25, that contains the minimum information that

should be obtained from a biological variation study in order

to be able to judge its quality. As the scope of this checklist is

for consultation in the preparation of a publication related to a

biological variation study, it considers very briefly the

practical aspects that should characterize a biological vari-

ation experimental protocol. In this section, we provide a

practical guideline for producing correct biological variation

data, by updating the Fraser and Harris original recommen-

dations2 and expanding all aspects included in the checklist

published by the EFLM WG-BV.

Preanalytical phase

As mentioned above, the ideal experimental protocol for

deriving biological variation data should minimize as much as

possible the preanalytical factors to make the preanalytical

variation component negligible. In this regard, it is necessary

to strictly control each step from the preparation of the subject

for sample collection to the time of analytical measurements.

Selection of subjects

There has been an extensive debate on which subjects should

be enrolled to correctly derive biological variation data of an

analyte26,27. In principle, we need to agree (or not) on the

biological variation theory that defines the physiological

fluctuation of an analyte around its homeostatic set point and,

consequently, recommends the enrollment of ostensibly

healthy subjects. The presence of disease, even if stable and

well controlled, may modify the experimentally obtained

information by amplifying such fluctuation21. Indeed, Fraser

and Harris stated that ‘‘the [enrolled] subjects should be

apparently healthy and undertaking and maintaining their

usual lifestyles’’2. More recently, Fraser has supported the

possibility of obtaining acceptable biological variation esti-

mates without undertaking his classic experimental protocol,

by also enrolling subjects affected by the disease, provided

that this is stable15,28. However, the difficulty of defining

disease stability a priori makes this approach less than ideal

and poorly recommendable in practice.

Age is another critical aspect to be considered in the

enrollment of subjects. Although earlier studies29 showed no

differences in CVI of common biochemistry analytes among

different age groups, more recent publications have shown

that a close correlation between CVI and age can be present,

at least for some quantities30,31. In general, it is recommended

to enroll adult subjects aged between 20 and 50 years, unless

the clinical use of the analyte being considered is intended for

specific age intervals (e.g. children). It is also important to

report the ethnicity of the enrolled population in a biological

variation study.

The enrolled subjects should be selected so as to minimize

pre-analytical variables. In this regard, it is necessary to

consider as exclusion criteria: (1) unusual habits and

lifestyles, (2) taking medications (including contraceptives

and over-the-counter drugs), (3) alcohol intake (410 g of

ethanol/day) and (4) smoking. In addition to these common

preanalytical variables, it is always necessary to identify more

specific variables related to the evaluated analyte (e.g. the

menstrual cycle regularity for deriving biological variation

data of a gynecological marker).

The total number of subjects to be enrolled is not defined,

but it is intuitive that the higher the number, the better the

biological variation average estimate will be. It is clear,

however, that it is more difficult to complete the experimental

protocol and perform analyses under the recommended

conditions if the number of subjects (and consequently of

samples) is high. In summary, the number of enrolled subjects

should be a compromise between an ideal high number and a

smaller number that is more easily manageable within the

recommended experimental design. A minimum of 10

subjects for each identified subgroup is considered sufficient

to obtain a good biological variation estimate for as-yet-

unstudied analytes32. The term ‘‘subgroup’’ here identifies a

specific sample of the general population for which it is

important to separately derive biological variation data.

Usually, the subgroups considered in a biological variation

study are those of the two genders (males and females), but

for specific analytes (e.g. ovarian cancer markers), additional

subgroups (e.g. pre- and post-menopause women) could be

considered.

Sample collection and storage

It is strongly recommended to standardize and define, in

advance and in writing, the criteria for sample collection,

transport, aliquoting and storage. Sample collection should be

performed at fixed time intervals and, in the case of blood,

draws should be performed by the same phlebotomist at the

same hour of the day (i.e. in the morning). At the time of

collection, the subjects should be fasting for at least 12 h

without having exercised in at least the preceding 24 h. As an

analyte might be affected by posture, it is appropriate that

subjects remain at rest before blood drawing for a time period

of between 5 and 10 min, preferably in a sitting or supine

position33. To reduce the likelihood of sample hemolysis, the

use of 20- or 21-gauge needles is recommended34. The tube

316 F. Braga & M. Panteghini Crit Rev Clin Lab Sci, 2016; 53(5): 313–325



www.manaraa.com

type should be chosen on the basis of the analyte to be

evaluated. The use of tubes with no anticoagulants and

without gel separator is recommended, providing that the

measurand can be determined in serum. The use of tubes

containing anticoagulants or gel separator may introduce a

source of preanalytical variation22. In any case, anticoagulants

for sample collection should be thoroughly validated before

they are used in a biological variation protocol, by using

appropriate experimental and statistical approaches35,36.

Once collected, all samples should be processed in the

same manner. Blood samples should be centrifuged within 1 h

of collection, but not before 30 min from drawing. Sample

integrity is important as inadequate preparation of the

specimen blood tube or insufficient specimen centrifugation

time may result in false analyte values due to the non-analyte

reaction from the presence of red blood cells, fibrin clots or

other floating debris. Subsequently, it is important to

immediately aliquot the samples into specified tubes for

freezing (secure closure cap). It is also recommended to

determine the interference indices (hemolysis, lipemia and

icterus) on an aliquot of each mother tube in an automatic

system to be able to exclude samples showing altered values

of these parameters37.

Finally, aliquoted specimens must be immediately stored at

�80 �C until analyzed. Specific sample processing before

freezing may be necessary. For example, in a study for the

biological variation derivation of tartrate-resistant acid phos-

phatase, a marker of osteoclast activity, serum aliquots were

acidified with 20 ml of 5 mol/l acetate buffer, pH 5.0, per mL

of serum before freezing to preserve the enzyme activity38.

Only when all specimens of all enrolled subjects are available

is it possible to proceed with the analytical phase. A different

experimental design may be necessary when the analyte under

study is unstable. In this case, samples must be assayed on the

day of collection, and the between-run CVA must be estimated

from assays of a quality control material having a concentra-

tion near the mean of the subjects studied; then the between-

run CVA must be subtracted from the CVT to obtain the

biological variation39.

Study duration

The biological variation estimate may depend on the selected

time interval between samples collected from the individual

and on the study duration. To obtain a reliable CVI estimate, it

is important to collect samples at regular time intervals and to

determine the study duration, which must be neither too short

(a few days) nor so long (years) as to be influenced by

additional causes (e.g. seasonal variation)40. In principle, the

sample time interval and the study duration should be related

to retesting times used for the measurements of the specific

analyte in clinical practice.

Analytical phase

Definition of the measurand and selectivity of the analytical

method

We have previously defined biological variation as an

intrinsic characteristic of the analyte. When we derive the

biological variation of an analyte, it is important to make sure

that the analyte in question coincides with the analytically

determined measurand. For this reason, it is essential, before

starting an experimental biological variation study, to check

if: a) the measurand has been uniquely defined by profes-

sional organizations and b) the analytical method used in the

experimental study is selective (i.e. analytically specific)

enough for the measurand as it has been defined.

In general, it is possible to distinguish two types of

analytes measured in the laboratory, the first that is

represented by well-defined chemical entities (e.g. electro-

lytes and metabolic products such as cholesterol, creatinine)

and the second that is composed of heterogeneous molecules

in human body fluids41. When a measurand definition for a

given analyte is officially recognized at the international

level, this should be considered in a biological variation

study42. Accordingly, it is essential to focus attention on the

selectivity of the analytical method used for the study, as this

characteristic is an important qualifier of biological variation.

In principle, if the methodology used has different selectivity

for the measured analyte, one could expect that the biological

variation, a property closely associated with the characteris-

tics of the analyte itself, could change significantly43.

Establishing the metrological traceability of the measurement

results undoubtedly helps to understand the measurements,

and for those analytes for which a reference measurement

system is available, the use of a traceable analytical procedure

for the derivation of their biological variation data is

mandatory. However, this is necessary but may not be

sufficient. A classic example is that of creatinine, the

determination of which can be performed by either alkaline

picrate-based or enzymatic methods. Both groups of methods

are currently made traceable to the reference system44.

However, it is well known that alkaline picrate-based assays

are non-specific for creatinine and that some endogenous and

exogenous substances in serum, particularly proteins, can also

be measured. Traceability implementation per se is unable to

correct for those analytical non-specificity issues, so the two

assay principles measure two different things45. On the other

hand, it is possible to derive biological variation data for

analytes for which measurement standardization is not

available, provided that the measurand determined by the

analytical method used in the study is clearly defined. The

information regarding metrological traceability of the analyt-

ical method used should always be reported in a biological

variation study. If, at the time a new test is placed into service,

the measurand is not yet known or well-defined, published

biological variation studies should indicate that results are

applicable to the specific assay used and not necessarily to the

biomarker itself.

Sensitivity of the analytical method

In addition to being selective, the analytical method used in a

biological variation experimental study should also be

sufficiently sensitive to the analyte to allow its reliable

determination in enrolled apparently healthy subjects. For

many analytes, this requirement is easily achieved; however,

for some, the use of assays providing high analytical

sensitivity is required22,46. For instance, studies that tried to

assess the biological variation of cardiac troponin T (cTnT)

were implausible as the majority47 or a significant number48
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of cTnT results in selected individuals were lower than the

assay limit of detection (LoD). Before beginning a biological

variation study, it is therefore appropriate to evaluate whether

the LoD of the analytical method is suitable for the

concentrations to be measured during the experimental

study22,49.

Sample analysis

Only when all samples of all enrolled subjects are available is

it possible to proceed with their analysis, which should be

performed in the same analytical run, in duplicate and in

random order. This protocol is the ideal experimental

model50. Performing all measurements in the same analytical

run allows the elimination of the between-run CVA compo-

nent, which is difficult to assess correctly; this approach

limits the influence on the obtained CVT of results to only the

within-run CVA, and reduces the chance of error in the

biological variation calculation obtained by subtraction of the

CVA. Duplicate measurements of any sample aliquot permit a

direct estimate of the within-run CVA. This is much better

than deriving it from the laboratory internal quality control

program (IQC), often obtained on non-commutable materials

potentially displaying a different behavior from biological

samples51. Finally, this approach allows the use of a single lot

of reagents and the involvement of a single analyst, which is

beneficial in reducing the imprecision of the analytical

method. As mentioned above, the only disadvantage of this

experimental model is the limited number of samples that can

be analyzed and, consequently, of subjects that can be studied.

Before and after the analytical run, it is essential to check

the alignment of the analytical system used with quality

control materials applying the validation range stated by the

manufacturer3.

Statistical analysis

After assaying all samples, it is recommended that the results

be tabulated in a clear and ordered way. Before starting the

statistical analysis, it is advisable to carefully checking the

rough results. Particularly, it is important to make sure that all

concentrations are above the LoD of the analytical method.

Then, it is possible to proceed with the evaluation of outliers

and the distribution of the data. Figure 1 displays the

recommended flow chart.

Tests for outliers

The first statistical evaluation that must be performed on the

results is outlier analysis. The importance of this phase is

related to the fact that even a single abnormal observation,

which could be caused by an analytical error or a sample

exchange, may markedly influence the estimation of variabil-

ity components. For outlier identification, it has been

recommended to use Cochran’s test among observations

(derived from duplicate measurements) and S2
I+A (average

within-subject total variance) values, and Reed’s criterion

among mean concentration values of subjects2.

Cochran’s test examines the ratio of the maximum variance

to the sum of variances. This test presumes that each variance

OUTLIER TEST
- OBSERVATIONS, S2

I+A (COCHRAN)
-MEAN VALUES OF SUBJECTS

(REED’S CRITERION) 

NORMALITY TEST:
- ON SET OF RESULTS FROM EACH

INDIVIDUAL 
(SHAPIRO WILK) 

REMOVE THE SUBJECT
CORRESPONDING TO

OUTLIER AND REPEAT THE TEST

NORMALITY TEST:
- ON MEAN VALUES OF SUBJECTS

(SHAPIRO WILK)

NATURAL
LOG-TRANSFORMATION

NOYES

NO for >50% of subjectsYES for >50% of subjects

ANOVA
NORMALITY TEST:

- ON MEAN VALUES OF SUBJECTS
(KOLMOGOROV-SMIRNOV) 

SI

ANOVA NATURAL
LOG-TRANSFORMATION

NORMALITY TEST ON Ln DATA:
- ON SET OF RESULTS FROM EACH

INDIVIDUAL 
(SHAPIRO WILK) 

STOP

NORMALITY TEST ON Ln DATA:
- ON MEAN VALUES OF SUBJECTS

(SHAPIRO WILK)

ANOVA STOP

NOYES

YES

YES

YES

NO

NO

NO

Figure 1. Recommended flow chart for the evaluation of outliers and data distribution in a biological variability study.
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is based on an equal number of observations and that only one

of the variances being tested appears unusually large. In terms

of the current application, the test also assumes that the errors

of duplicate determinations and/or of S2
I+A values are

normally distributed about the true value for that specimen

and/or for those subjects2. Reed’s criterion considers the

difference between the extreme value and the next highest (or

lowest) value and rejects the extreme if this difference

exceeds one-third of the range of all values. This test, a rule-

of-thumb simplification of a family of tests proposed by

Dixon, also assumes that the true distribution (in this case, the

distribution of the population of the mean concentration

values of the subjects) is normal2. To simplify the statistical

calculations, if an outlier is identified, regardless of the level

at which it belongs (observations, S2
I+A values or average

values of the subjects), it is advisable to exclude all data of the

corresponding subject.

Normality tests

The biological variation derivation as CV requires that data

are normally distributed. Some formulas used for the

biological variation data applications, including that for the

RCV calculation, also require the normality condition. It is,

therefore, essential, after outlier exclusion, to proceed with

the evaluation of data distribution. To determine if a dataset is

modeled by a normal distribution and to compute how likely it

is for a random variable underlying the data set to be normally

distributed, it is necessary to apply some normality tests.

At first, a statistical normality test (Shapiro–Wilk test)52

should be applied separately to the set of results from each

individual to check data distribution and to validate the

normality hypothesis. If the normal distribution assumption is

rejected for most of the analyzed subjects (i.e. 450%), it is

recommended that the natural logarithmic scale transform-

ation of all data be used.

The same test must be used to evaluate the distribution of

mean concentration values of all subjects and, if necessary,

separately for each subgroup. If the test rejects the hypothesis

of normality, it is recommended that the normality evaluation

be repeated by a different statistical test (e.g. Kolmogorov–

Smirnov test)53. If even this test confirms a skewed distribu-

tion, a natural logarithmic scale transformation should be

applied. It is also essential to repeat the Shapiro–Wilk test on

the log-transformed values to experimentally confirm the

normality of the transformed data distribution. If the data

transformation does not resolve the skewed distribution issue,

the authors are forced to stop the calculations. On the other

hand, if the normal distribution is in fact confirmed, it is

possible to derive the variance components from the trans-

formed data. These data must, however, be converted back

before calculating the CVs to make these latter applicable to

laboratory practice.

Tests for comparing populations

To compare the mean and S2
I+A values of two subgroups (e.g.

males versus females), an unpaired Student’s t-test and an F-

test, respectively, should be performed. As the Student’s t-test

is a parametric statistic, if the normality assumption for the

distribution of mean concentration values of the subjects is

not accepted, the non-parametric Wilcoxon–Mann–Whitney

test54 on untransformed median values should be performed.

If by applying the proper statistical test, the mean values of

the two subgroups are significantly different and the RI, on

the basis of II, is useful, the interpretation of test results

should be based on RI differentiated by subgroup. If the F-test

shows that S2
I+A values related to two subgroups are

statistically different, it is important that all the parameters

derived from CVI (II, RCV, n, analytical performance

specifications, etc.) are calculated separately for each

subgroup.

Index of heterogeneity

To assess the heterogeneity of within-subject variances, it is

recommended to estimate the index of heterogeneity (IH) that

is the ratio of the observed CVT to the theoretical CV, which

is [2/(k�1)]1/2, where k is the number of specimens collected

per subject. The SD of the difference between this ratio and its

expected value of unity (under the hypothesis of no hetero-

geneity of true within-subject variances) is 1/(2k)1/2. A

significant heterogeneity is present if the ratio differs from

unity by at least twice this SD2. In this case, it is necessary to

consider that the estimated RCV using the experimentally

obtained CVI is not ubiquitously valid, but it may be used as a

simple figure to guide clinical decision-making. On the

contrary, if IH is not significant, the average of the observed

within-subject variances can be used for calculating a

reference difference between two successive measurements,

which is valid in different individuals2. Other acceptable tests

for assessing variance homogeneity are Bartlett’s Chi-square

test55, Cochran’s test56, Levene’s test57, Brown–Forsythe’s

test58 and Fligner–Killeen’s test59.

Analysis of variance (ANOVA)

The ANOVA of results obtained from replicates analysis is a

reliable non-parametric procedure for estimating the variance

components of interest. The preliminary phase of this analysis

consists in the derivation of S2
A, estimated as the average

variance between duplicate measurements of the analyte, and

of S2
I+A, estimated as the weighted average of the variance of

means of duplicate measurements for each subject. The S2
I is

obtained from S2
A and S2

I+A by the formula shown in Table 1.

The final component of variance for which an estimate is

desired is S2
G. To estimate this quantity, when the number of

specimens varies from one subject to another, a nested

component of variance analysis should be carried out. When

the number of specimens collected from each enrolled subject

is the same, this estimate may be calculated as shown in Table

1 without going through a formal ANOVA. All the above-

mentioned variance components are then transformed into

CVs using the corresponding mean value.

Biological variation result reporting

The mean concentration values, the estimates of CVA and

biological variation components (as CV) for all subjects, and

separately for the subgroups, and the derived indices (II, RCV,

n, etc.) should be tabulated in a clear format to allow their

easy identification. We suggest also tabulating the derived
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analytical performance specifications at the three quality

levels (minimum, desirable and optimal) in a separate table.

The CVI data should be reported with corresponding confi-

dence intervals at 95% (CI95%). In this regard, if the

determinations are performed in duplicate, the calculation

of the CI95% can easily be derived from the average number

of samples and subjects60. The terminology, symbols and

units of measurement should conform to recommended

standards61.

In the results section, the number of subjects (and of

samples) included in statistical calculations after the identi-

fication and exclusion of outliers should be clearly reported.

A biological variation study should also graphically report the

individual parametric mean and absolute range of values in

the individuals that were studied. Figure 2 shows an example

of this graph.

Discussion and conclusion

In recent decades, biological variation studies of different

analytes have received increasing attention due to the

practical application of such knowledge in defining important

parameters for the interpretation and use of laboratory tests.

Considering the importance of biological variation data in

laboratory medicine, it is essential to experimentally derive

them in an accurate and reliable way. Currently, a dated

guideline for the biological variation data production and a

more recent checklist that assists researchers in producing

high-quality publications are available2,24. Here, we have

updated the approach to derive biological variation data in

order to facilitate compliance with the checklist recommen-

dations. In this regard, we have analyzed in detail all aspects

that should be considered in an experimental protocol for the

biological variation data production of an analyte.

Currently, the most commonly used information on the

biological variation of biochemical and hematological

analytes is that compiled by the Spanish Society of Clinical

Chemistry and Molecular Pathology (SEQC), which is freely

available10. This database lists the average CVI and CVG

components derived from data available in the literature as

well as the desirable targets for analytical imprecision, bias

and TE for each analyte. The criteria used for the production

of this database have recently been published62. In spite of

being highly consulted, the content of this database has been

criticized and the need to improve the information by

applying more stringent criteria in the selection and review

of available biological variation studies has been recog-

nized21,22. To this end, a new study group has recently been

created by EFLM under the auspices of the Task Force on

Performance Specifications in Laboratory Medicine5.

Another EFLM group is dealing with the most appropriate

model for deriving analytical performance specifications for

laboratory measurements63. In the preliminary discussion, the

biological variation model is considered very useful if the

measurand has strict homeostatic control, whereas it is

probably not appropriate for analytes that show no homeo-

static control or that are present in blood but reflect no

physiologic role.

The statistical management of data derived in biological

variation studies is an often-neglected problem. The difficulty

in deriving reliable estimates of biological variation for those

analytes, the measured individual concentrations of which are

not normally distributed, is more and more evident. When an

analyte shows a skewed biological variation data distribution,

the log-transformation may be appropriate to solve problems

related to a non-Gaussian distribution of values. However, this

may create confusion in interpreting the RCV obtained as the

use of log-transformed laboratory test results is impractical

for individual patient care. Furthermore, this approach does

not always solve the distribution problems or work. For

instance, for CRP, the symmetric distribution of individual

data is seldom achieved even by logarithmic transformation.

deGoma et al. employed an alternative model for calculating

RCV in the case of CRP64. Although their methodological

approach tried to overcome the limitation of parametric

protocols, some important pitfalls were highlighted18. In

particular, with regard to the statistical analysis of data, the

authors applied a linear mixed effects model for longitudinal

data that had previously been adopted by Glynn et al. in the

study of intra-class correlation coefficient (ICC) of CRP.65.

However, as highlighted above, in the case of CRP, the log-

transformation of results, which is instrumental in using the

ICC estimate, is unable to assure the normalization of data

distribution, making the proposed approach weak. To succeed

in solving these problems, we have recently proposed a new

non-parametric statistical model for the interpretation of

differences in serial test results from an individual19. In

addition to the distribution problem, the proposed approach
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Figure 2. Representation of individual parametric mean and absolute
range of values in a group of subjects evaluated for HbA1c biological
variation. From43.
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also overcomes the problem of correlation between within-

subject serial measurements, which may cause an overesti-

mation of CVI, allowing for the first time the establishment of

reliable interpretative criteria for assessment of results of

biologically complex analytes such as CRP, and potentially

contributing to set aside previously raised perplexities about

their clinical utility66. A validation of the new proposed model

in specific clinical contexts is definitely required before its

final application.
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Appendix

Practical Examples

Pre-analytical phase

The following examples relate to some important preanalytical aspects
that should be carefully considered in the biological variation experi-
mental protocol: subject selection31 and study duration19.

Selection of subjects

Serum human epididymis protein 4 (HE4) is a biomarker recently
proposed for diagnosis and monitoring of ovarian cancer67. In planning a
study for estimating the biological variation of this tumor marker, all
potential sources of preanalytical variability previously identified for
HE4 measurements were taken into account and excluded in enrolled
patients68. As it was unclear if menopausal status per se might influence
serum HE4 concentrations, in recruiting individuals to derive HE4
biological variation data, we selected ostensibly healthy women in pre-
menopause (n¼ 14; age interval, 25–53 years) and in post-menopausal
(n¼ 14; age interval, 50–68 years) and analyzed them as separated
subgroups31. Furthermore, to avoid potential HE4 changes in response to
different phases of the menstrual cycle and the effect of oral
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contraceptives69,70, the selected pre-menopausal women had regular
menstrual cycles and were not using hormonal contraceptives. Blood
samples were obtained monthly for four consecutive months. In women
in pre-menopause, the blood was collected between the 12th and 14th d
of the menstrual cycle; this corresponded to their ovulation period and
avoided the potential influence of different phases of the menstrual cycle
on the biological fluctuation of HE4 concentrations.

Study duration

CRP is an acute-phase protein produced by the liver in response to
inflammation and infection71. Seasonal variation has been demonstrated
for the protein concentrations in blood72. It, therefore, seems reasonable
to adjust the duration of a study evaluating the biological variability of
CRP to between approximately 1 and 3 months, with a frequency of
sample collections of 1–2 weeks19.

Analytical phase

Measurand definition and method selectivity

HbA1c is the ‘‘gold standard’’ for the monitoring of diabetes mellitus and
the knowledge of its blood concentrations is essential in the assessment
of the degree of glycometabolic control in diabetic patients and in the
prediction of risk for vascular complications in these subjects73. In the
process of HbA1c standardization that IFCC started 20 years ago, the
measurand has been defined as hemoglobin molecules having a specific
hexapeptide in common, the stable adduct of glucose to the N-terminal
valine of the hemoglobin b-chain (bN-1-deoxyfructosyl-hemoglobin)74.
Starting from this measurand definition, IFCC has developed a complete
reference measurement system for HbA1c through 1) the implementation
of two equivalent reference methods (HPLC/mass spectrometry- and
HPLC/capillary electrophoresis-based) that are highly specific for the
measurand as defined; 2) the characterization of primary and secondary
calibrators and 3) the organization of an international network of
laboratories performing one or both reference procedures75. Before the
establishment of the IFCC reference measurement system for HbA1c, the
National Glycohemoglobin Standardization Program (NGSP) was
created in the United States to harmonize HbA1c results through the
implementation of assay traceability to the ion-exchange HPLC method,
originally employed in the Diabetes Control and Complications Trial
(DCCT)76. In the NGSP system, HbA1c was, therefore, roughly defined
as the area under the curve of the corresponding chromatographic peak
obtained with the method mentioned above42. To transfer the clinical
experience gained with the NGSP-aligned assays to the new IFCC
system, a relationship between IFCC and NGSP systems was established
by defining the so-called IFCC-NGSP ‘‘master equation’’ (ME) [NGSP
(%)¼ 0.09148� IFCC (mmol/mol) + 2.152], which expresses the cor-
relation between the two systems77,78). The presence of a significant
intercept (2.152) in the ME equation denoted, however, the different
analytical selectivity of the two measuring systems (NGSP and IFCC), as
expected from the difference in the measurands as defined above.

Weykamp et al.79 first demonstrated with the simple mathematical
reasoning that the biological variation estimates related to the NGSP and
IFCC definitions of HbA1c may differ. To verify this hypothesis
experimentally, we carried out a study to derive biological variation
parameters for HbA1c by performing measurements using an assay for
which we had previously ascertained its perfect alignment to the IFCC
reference system43. The results obtained when compared with those of
previously available studies, which assayed a measurand different from
that defined by IFCC21, showed that the biological variation components
were higher using the IFCC system than the NGSP system, giving rise,
consequently, to different analytical specifications.

Sensitivity of assays used

The use of assays capable of accurately measuring very low analyte
concentrations sometimes present in healthy subjects is fundamental for
generating reliable biological variation data. In evaluating the reliability
of the available information on the biological variation of CRP, we

turned our attention to the LoD reported in publications evaluating the
analytical sensitivities of assays used in different studies to measure the
very low CRP concentrations detected in healthy individuals22. Only half
of the studies directly or indirectly described the LoD of the analytical
method used. Furthermore, as only standard CRP assays, which were
able to consistently measure CRP elevation in inflammatory conditions
but were unreliable for detecting low protein concentrations in a healthy
cohort, were available until the second part of the 1990s; all older studies
suffered from insufficient analytical sensitivity. In a recent study
evaluating the biological variation of CRP, we measured this marker
using a highly sensitive latex immunoturbidimetric assay (Roche
Diagnostics, Mannheim, Germany), with a LoD of 0.15 mg/L19. The
study involved the collection of 110 serum specimens (five from each of
22 apparently healthy volunteers), each assayed in duplicate. One case
was eliminated because three CRP values out of five were5LoD.

Statistical analysis

Identifying outliers

For the biological variation estimate of the serum immunoglobulin free k
and � light chains (FLC) and k/� FLC ratio calculation, we collected five
blood specimens from each of 21 enrolled volunteers and each sample
was measured in duplicate80. In Tables A1–A3, we report, as an example,
the calculations for outlier identification performed for k FLC with
Cochran’s statistical test applied to duplicate observations and S2

I+A

values and for Reed’s criterion applied to the average k FLC values of
subjects, respectively. By consulting the table for Cochran’s test
optimized (for p ¼0.01), one sees that, with a total number of �100
values and 2 degrees of freedom, the maximum/sum ratio should be
50.142481. Having experimentally obtained a value of 0.154 for this ratio
on all observations (Table A1), the highest detected variance
(0.21125 mg/L) has to be considered as an outlier and the subject
displaying this variance (number 2) eliminated from analyses. After
removing the outlier, Cochran’s test was performed again; the maximum/
sum ratio was 0.079, which, on the basis of the table for Cochran’s test
optimized, allowed the data to be accepted. Cochran’s test was also
applied to S2

I+A values (Table A2). By consulting the table for the
Cochran’s test optimized (for p ¼0.01), one notes that, with 20 values
and 4 degrees of freedom, the maximum/sum ratio should be50.265481.
Having experimentally obtained a value of 0.28819 for this ratio for
S2

I+A values, the maximum variance (3.88997) should be considered as
an outlier and the corresponding subject (number 16) should be
eliminated from analyses. Cochran’s test was then performed again;
the maximum/sum ratio was 0.2611, which allowed the data to be
accepted. Finally, for the application of Reed’s criterion for identification
of outliers among mean values of subjects, the average k FLC values (the
mean of the five duplicate means) of each individual were considered in
ascending order (Table A3). To exclude the presence of outliers, the
differences between the second lowest value (6.20 mg/L) and the lowest
(5.88 mg/L) and between the highest value (13.41 mg/L) and the second
highest (9.85 mg/L) should not be 42.51 mg/L, which is the difference
between the maximum (13.41 mg/L) and the minimum value (5.88 mg/
L), divided by 3. The first difference (0.32 mg/L) was indeed well below
the limit, but the second one (3.56 mg/L) was much higher. The subject
with the highest k FLC mean value was then eliminated and Reed’s
criterion repeated; this time a difference between the highest value
(9.85 mg/L) and the next highest one (9.66 mg/L) of 0.19 mg/L was
obtained, which is lower than one-third of the difference between the two
extreme values (1.32 mg/L). At the end of all steps, after removing all the
outliers, the number of subjects with results usable for the estimate of
biological variation components for serum k FLC was 1880.

Testing normality of distributions

Reported examples relate to the biological variation studies of three
analytes with different data distributions.

In studying HbA1c biological variation in a group of 18 subjects19,43,
we evaluated the frequency distribution of HbA1c values characterizing
the subject population. The Shapiro–Wilk test accepted the hypothesis of
normality of the data distribution in the great majority of subjects. The
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condition of normality was also accepted for the distribution of mean
HbA1c values of all subjects and of male and female subgroups.

In studying the biological variation of carbohydrate antigen 125 (CA-
125), a biomarker for detecting ovarian cancer recurrence and monitor-
ing the therapeutic response, the Shapiro–Wilk test accepted the
hypothesis of normality for the distribution of within-subject marker
values for all subjects, while for the distribution of individual mean CA-
125 values of enrolled subjects, the normality test failed31. The
Kolmogorov–Smirnov test confirmed the skewed distribution.
Consequently, a natural log scale transformation was applied before
calculation. The Shapiro–Wilk test was repeated for the CA-125
individual mean values obtained from log-transformed data and the
hypothesis of normality was finally accepted. The obtained S2

I, S2
G and

overall mean were converted back via inverse natural logarithmic
function before deriving biological CVs31.

In the study evaluating the biological variation of CRP quoted
above19, the Shapiro–Wilk test failed to accept the hypothesis of
normality for the distribution of 70% of within-subject values. Therefore,
we transformed all data by natural log-scale and repeated the normality
test. Even after logarithmic transformation, the Shapiro–Wilk test failed
to accept the hypothesis of normality for the distribution of 25% of
within-subject CRP values. The inability to normalize the distribution of
CRP values prevented the biological variation data derivation for this
analyte by the traditional protocol based on a parametric calculation of
CVs.

Table A1. Calculations for Cochran’s statistical test for outlier identi-
fication applied to the duplicate observations for serum k-free light
chains obtained in a biological variation study (80).

Subject no. Sample (r2� r1)2/2 (mg/L)

1 A 0.00500
B 0.00320
C 0.00005
D 0.02420
E 0.00125

2 A 0.21125
B 0.00180
C 0.08405
D 0.00080
E 0.00720

3 A 0.00080
B 0.00320
C 0.01445
D 0.00125
E 0.03125

4 A 0.00245
B 0.00125
C 0.06480
D 0.00125
E 0.03380

5 A 0.04805
B 0.00500
C 0.08405
D 0.04205
E 0.00605

6 A 0.00320
B 0.00320
C 0.04805
D 0.01125
E 0.01805

7 A 0.01805
B 0.00045
C 0.00005
D 0.00405
E 0.02000

8 A 0.00080
B 0.00500
C 0.00045
D 0.00020
E 0.00320

9 A 0.00005
B 0.00500
C 0.00125
D 0.01125
E 0.00125

10 A 0.00045
B 0.02000
C 0.00045
D 0.00045
E 0.03125

11 A 0.00500
B 0.00020
C 0.04500
D 0.01620
E 0.00845

12 A 0.02000
B 0.00045
C 0.00180
D 0.00500
E 0.02420

13 A 0.02000
B 0.00080
C 0.00605
D 0.00405
E 0.00500

14 A 0.00125
B 0.00605
C 0.05120

(continued )

Table A1. Continued

Subject no. Sample (r2� r1)2/2 (mg/L)

D 0.00020
E 0.00405

15 A 0.00720
B 0.00020
C 0.00045
D 0.00405
E 0.00000

16 A 0.00080
B 0.00000
C 0.00980
D 0.00020
E 0.00500

17 A 0.00980
B 0.01445
C 0.01280
D 0.01620
E 0.00245

18 A 0.01620
B 0.01620
C 0.00125
D 0.03125
E 0.00005

19 A 0.00245
B 0.00005
C 0.01280
D 0.02000
E 0.01125

20 A 0.00045
B 0.01125
C 0.00605
D 0.02205
E 0.00845

21 A 0.00605
B 0.00045
C 0.00005
D 0.00845
E 0.00005

Total number of variances 105
Sum of variances 1.36905 mg/L
Maximum variance 0.21125 mg/L
Maximum/sum ratio 0.154

r1, replicate 1; r2, replicate 2.
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Comparing populations

During an experimental study of biological variation of total copper,
ceruloplasmin and copper/ceruloplasmin ratio (Cu:Cp) in serum, mean
analyte values and S2

I+A values of male and female subjects were
compared by the unpaired Student’s t-test and the F-test, respectively,
using the MedCalc statistical program (MedCalc Software bvba, Ostend,
Belgium)82. Mean Cu:Cp values was slightly higher (p¼0.02) in women
than in men, whereas no sex-dependent difference was found for copper
and ceruloplasmin concentrations. However, S2

I+A values of the studied
parameters were not different between the genders; this allowed the
derivation of only one CVI value for the whole population.

Assessing the index of heterogeneity

CgA and neuron-specific enolase (NSE) are biomarkers for neuroendo-
crine tumors. For the derivation of their biological variation, we
collected five blood specimens from each of 22 apparently healthy
volunteers on the same day of the week, every 2 weeks for 2 months37.
With five data points for each subject, the within-subject data are
homogeneous if IH is 50.632. However, the calculated IH (0.768 for
CgA and 0.805 for NSE) did not fulfill the homogeneity condition.
Consequently, the RCV obtained for CgA and NSE were not directly
transferable to the entire population for the clinical interpretation of
marker results, but were just suggestive of the extent that changes in
results should reach to indicate the presence of some external sources of
variation (e.g. disease progression or therapy effectiveness).

Table A2. Calculations for the Cochran’s statistical test for
outlier identification applied to the within-subject vari-
ances obtained in a biological variation study of serum
k-free light chains (80).

Subject no. S2
I+A (mg/L)

1 0.54219
3 2.50866
4 0.31316
5 2.09345
6 0.17169
7 0.46693
8 0.15303
9 0.13124

10 0.13100
11 0.28817
12 0.22058
13 0.82346
14 0.22063
15 0.09914
16 3.88997
17 0.46514
18 0.15857
19 0.39579
20 0.2546
21 0.17045
Total number of variances 20
Sum of variances 13.4978 mg/L
Maximum variance 3.88997 mg/L
Maximum/sum ratio 0.28819

Table A3. Average values for each of the
enrolled subjects, displayed in ascending
order, in a biological variation study of
serum k-free light chains to be used for the
application of Reed’s criterion (80).

Mean (mg/L)

5.88
6.20
6.28
6.68
7.20
7.61
7.75
7.94
8.00
8.05
8.44
8.50
8.56
8.66
9.01
9.08
9.66
9.85

13.41
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